Noetherian Hereditary Abelian Categories Satisfying Serre Duality

نویسندگان

  • I. REITEN
  • M. VAN DEN BERGH
چکیده

Notations and conventions 296 Introduction 296 I. Serre duality and almost split sequences 300 I.1. Preliminaries on Serre duality 300 I.2. Connection between Serre duality and Auslander–Reiten triangles 304 I.3. Serre functors on hereditary abelian categories 307 II. Hereditary noetherian abelian categories with non-zero projective objects 309 II.1. Hereditary abelian categories constructed from quivers 310 II.2. Hereditary abelian categories generated by preprojectives 314 II.3. Derived equivalences 318 II.4. The classification 324 III. Sources of hereditary abelian categories with no projectives or injectives 329 III.1. Hereditary abelian categories with Serre functor and all objects of finite length 329 III.2. Sheaves of hereditary orders and graded rings 331 III.3. Hereditary abelian categories associated to infinite Dynkin and tame quivers 333 IV. Hereditary noetherian abelian categories with no projectives or injectives 345 IV.1. Preliminaries 345 IV.2. Completion 349 IV.3. Description in terms of a pullback diagram 353 IV.4. The finite orbit case 356 IV.5. The infinite orbit case 358 V. Applications 360 V.1. Saturatedness 361

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 1 Noetherian hereditary abelian categories satisfying Serre duality

In this paper we classify Ext-finite noetherian hereditary abelian categories over an algebraically closed field k satisfying Serre duality in the sense of Bondal and Kapranov. As a consequence we obtain a classification of saturated noetherian hereditary abelian categories. As a side result we show that when our hereditary abelian categories have no nonzero projectives or injectives, then the ...

متن کامل

3 0 N ov 1 99 9 Noetherian hereditary categories satisfying Serre duality

In this paper we classify noetherian hereditary abelian categories satisfying Serre duality in the sense of Bondal and Kapranov. As a consequence we obtain a classification of saturated noetherian hereditary categories. As a side result we show that when our hereditary categories have no nonzero projectives or injectives, then the Serre duality property is equivalent to the existence of almost ...

متن کامل

Spectra of small abelian categories

Here we take the view that small abelian categories are certain categorical versions of rings and the collection of Serre subcategories of a small abelian category is then analogous to the set of ideals of a commutative ring. We consider two topologies on the collection of Serre subcategories; one is a very direct lift of the Zariski topology, the other, dual, topology appeared in the context o...

متن کامل

A possible introduction to derive categories

This talk is sloppy and let me tell ya: it’s not looking good. This is a writeup of some of the things I wanted to talk about. The best place to learn derived categories is of course Daniel Huybrechts’s book. In case you were wondering, all the mistakes you find below are mine: you can’t have them. So, the formal aspect of derived and triangulated categories was kicked off by two separate schoo...

متن کامل

ar X iv : m at h / 06 10 12 2 v 1 [ m at h . C T ] 3 O ct 2 00 6 BALANCE IN STABLE CATEGORIES

We study when the stable category A of an abelian category A modulo a full additive subcategory T is balanced and, in case T is functorially finite in A, we study a weak version of balance for A . Precise necessary and sufficient conditions are given in case T is either a Serre class or a class consisting of projective objects. The results in this second case apply very neatly to (gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002